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Laboratoire Analyse Géometrie et Aplications, URA CNRS 742,
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ABSTRACT

We consider the Euler equations on the Lie algebra so(4, C) with a diagonal

quadratic Hamiltonian. It is known that this system always admits three

functionally independent polynomial first integrals. We prove that if the

system has a rational first integral functionally independent of the known

three ones so called fourth integral, then it has a polynomial first integral

that is also functionally independent of them. This is a consequence of

more general fact that for these systems the existence of Darboux polyno-

mial with no vanishing cofactor implies the existence of polynomial fourth

integral.
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1. Introduction

For a given system of (polynomial) ordinary differential equations depending on

parameters, the question arises, how to recognize those values of the parameters

for which the equations have (rational or polynomial) first integrals? Except

for some simple cases, this problem is very hard and there are no satisfying

methods to solve it.

In this paper we obtain a partial result concerning this problem relevant for

the so-called Euler equations on Lie algebras [1–3, 6, 13, 14]. For these

equations the problem is largely open too.

Let us recall their definition. Let (L, [·, ·]) be a finite dimensional (real or

complex) Lie algebra. L∗ its dual. For f, g ∈ C∞(L∗) their Lie-Poisson

bracket {f, g} is defined by

{f, g}(x) = 〈x, [df(x), dg(x)]〉,

where x ∈ L∗, df(x), dg(x) ∈ (L∗)∗ = L∗∗ ≈ L, and where for x ∈ L∗ and

y ∈ L, 〈x, y〉 = x(y).

Recall that the function F ∈ C∞(L∗) is a Casimir function of the Lie

algebra L if {f, F} = 0 for every f ∈ C∞(L∗).

Element x ∈ L∗ can be written x =
∑n

i=1 xie
∗
i ; xi ∈ C∞(L∗), 1 ≤ i ≤ n,

where {e∗1, . . . , e∗n} is the basis dual to a fixed basis {e1, . . . , en} of L.

For a given function H ∈ C∞(L∗), the system of differential equations

(1.1)
dxi

dt
= {xi, H}, 1 ≤ i ≤ n,

is called Euler equations on the Lie algebra L with the Hamiltonian H .

It is easy to see, [13], that a function F defined on L∗ is a first integral of

system (1.1) if and only if {F, H} = 0. In particular, the Hamiltonian H and

any Casimir function of the Lie algebra L are first integrals of system (1.1).

Only for Hamiltonians H that are functionally independent of the Casimir

functions, the right sides of system (1.1) do not vanish identically. That is

why we will always suppose that the Hamiltonian and Casimir functions are

functionally independent.

From now on we will concentrate only on complex six dimensional Lie algebra

so(4, C)—the Lie algebra of the complex Lie group SO(4,C) and study one of the

simplest examples of Euler equations on it—the Euler equations corresponding

to the so called diagonal quadratic Hamiltonian.
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The Lie algebra so(4, C) admits two functionally independent polynomial

Casimir functions. Thus any system of Euler equations on it always admits

three functionally independent first integrals.

For this Lie algebra, on the level manifolds of two functionally independent

Casimir functions any Euler system, at least locally, can be reduced to the

standard Hamiltonian equations with two degrees of freedom (see Sections 6.1–

6.2 and Theorem 6.22 from [13]).

In appropriate basis of Lie algebra so(4, C) (see [1]), the Euler equations cor-

responding to a diagonal quadratic Hamiltonian 1
2

∑6
i=1 λix

2
i , take the following

elegant form:

dx1

dt
= (λ3 − λ2)x2x3 + (λ6 − λ5)x5x6,

dx2

dt
= (λ1 − λ3)x1x3 + (λ4 − λ6)x4x6,

dx3

dt
= (λ2 − λ1)x1x2 + (λ5 − λ4)x4x5,

dx4

dt
= (λ3 − λ5)x3x5 + (λ6 − λ2)x2x6,

dx5

dt
= (λ4 − λ3)x3x4 + (λ1 − λ6)x1x6,

dx6

dt
= (λ2 − λ4)x2x4 + (λ5 − λ1)x1x5,

(1.2)

where λ := (λ1, . . . , λ6) ∈ C6. Exactly the same construction takes place for

Lie algebra so(4, R), where λ := (λ1, . . . , λ6) ∈ R
6 and equations (1.2) remain

unchanged.

They always have three first integrals:

(1.3) H1 = x1x4 + x2x5 + x3x6, H2 =

6
∑

i=1

x2
i , H3 =

6
∑

i=1

λix
2
i .

Unless all the λi, 1 ≤ i ≤ 6, are equal, in which case the right hand sides of

system (1.2) vanish, these three integrals are functionally independent.

The first integrals H1 and H2 are Casimir functions of the Lie algebra so(4, C).

Whatever the chosen notion of integrability, the system (1.2), to be integrable

needs a supplementary first integral H4, functionally independent of H1, H2 and

H3, called shortly a fourth integral. The only known cases when the fourth
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integral exists are the Manakov case, defined by the condition

M = λ1λ4(λ2+λ5−λ3−λ6)+λ2λ5(λ3+λ6−λ1−λ4)+λ3λ6(λ1+λ4−λ2−λ5) = 0,

and the product case, defined by the conditions

λ1 = λ4, λ2 = λ5, λ3 = λ6.

In both cases the fourth integral can be found among the polynomials of

degree at most 2 (see [1, 9]). As in [9] the table of these first integrals was not

correctly printed, for the sake of completeness we reproduce its correct form in

Appendix.

We will concentrate only on fourth rational integrals. As is well-known,

their absence implies the absence of algebraic fourth integrals [8, 18, 19] as well

as the absence of meromorphic fourth integrals defined on some neighbourhood

of 0 of C6, [20].

The main aim of this paper is to prove the following theorem.

Theorem 1.1: If for some λ ∈ C6, the Euler equations (1.2) admit a rational

fourth integral, then they admit a polynomial fourth integral.

Let us note that from the validity of Theorem 1.1 in complex setting, its

validity in real one follows immediately.

The proof of Theorem 1.1 is based on the study of Darboux polynomials

(see Section 2.1) for Euler equations (1.2) and the rich symmetry properties

of these equations. In fact, Theorem 1.1 is a direct consequence of the more

general statement (Theorem 3.1) concerning these polynomials.

Let us underline that the following conjecture remains open.

Conjecture : In both cases, so(4, C) and so(4, R), Euler equations (1.2) have a

polynomial fourth integral only either in the Manakov case or in the product

case.

See [1, 3, 5, 6, 15, 17] for partial results which confirm it.

The paper is organized as follows. In Section 2 we collect all auxiliary facts

needed for the proof. In Section 3 Theorem 1.1 is obtained as a direct conse-

quence of more general Theorem 3.1 concerning Darboux polynomials. Let us

stress that all proofs are completely elementary.
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Finally let us note that in [10] an exact counterpart of Theorems 1.1 and

3.1 is proved for so called natural polynomial hamiltonian systems of arbitrary

degree of freedom.

2. Preliminaries

2.1. Darboux polynomials. Consider a polynomial system of ordinary dif-

ferential equations defined in Cn

(2.1)
dxj

dt
= Vj(x1, . . . , xn), 1 ≤ j ≤ n.

For a holomorphic function F defined on some open subset of Cn let us define

d(F ) =

n
∑

i=1

∂F

∂xi

Vi.

The operator d is called a derivation associated with system of differential

equations (2.1).

A polynomial P ∈ C[x1, . . . , xn] \ C is called a Darboux polynomial of

system (2.1) if for some polynomial S ∈ C[x1, . . . , xn] one has

(2.2) d(P ) = SP.

The polynomial S is called a cofactor of the Darboux polynomial P . When

S 6= 0, P is called a proper Darboux polynomial. When S = 0, P is nothing

but a first integral of system (2.1).

Here we mention some properties of the Darboux polynomials:

(D1) Let P1 and P2 be non-zero relatively prime polynomials that are not

first integrals of system (2.1). Then the rational function P1/P2 is a

first integral of system (2.1) if and only if P1 and P2 are its proper

Darboux polynomials with the same cofactor.

(D2) All factors of a Darboux polynomial of system (2.1) are also its Darboux

polynomials.

(D3) If P1 and P2 are two Darboux polynomials of system (2.1) with cofactors

S1 and S2, respectively, then P1P2 is also its Darboux polynomial with

cofactor S1 + S2.

(D4) Let us suppose that the right-hand sides of system (2.1) are homoge-

neous polynomials of the same degree. Let P be a Darboux polynomial
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of system (2.1). Then its cofactor S is homogeneous and all homoge-

neous components of P are also Darboux polynomials of system (2.1).

See [12] for more details.

2.2. Permutational symmetries. The Euler equations (1.2) possess invari-

ant property called permutational symmetry. The permutational sym-

metries can be described generally as follows. Let x = (x1, . . . , xn) ∈ Cn,

λ = (λ1, . . . , λn) ∈ Cn, and let V (x, λ) = (V1(x, λ), . . . , Vn(x, λ)) depend holo-

morphically on (x, λ) ∈ C2n. Let us consider the following system of differential

equations

(2.3)
dx

dt
= V (x, λ).

Let σ be an element of the symmetric group Sn, i.e., the group of all permuta-

tions of {1, . . . , n}. For a = (a1, . . . , an) ∈ C
n we will note

σ(a) = (aσ(1), . . . , aσ(n)).

A permutation σ ∈ Sn will be called a permutational symmetry of system

(2.3) if for all (x, λ) ∈ C2n, one has

Vk(σ(x), σ(λ)) = εVσ(k)(x, λ), 1 ≤ k ≤ n,

where ε = ±1 is a constant independent of k. All permutational symmetries of

system (2.3) form a group.

Theorem 2.1: Let σ be a permutational symmetry of system (2.3).

(a) Let F = F (x) be a first integral of system (2.3). Then the function

F̃ = F ◦ σ−1 is a first integral of the system

(2.4)
dx

dt
= V (x, σ(λ)).

(b) Let P = P (x) be a Darboux polynomial of system (2.3) (see (2.2)). Let

us note d̃ the derivation associated with system (2.4). Then

d̃(P̃ ) = S̃P̃ ,

where P̃ = P ◦ σ−1 and S̃ = S ◦ σ−1.

For the proof of (a) see Section II of [9]. (b) is proved exactly along the same

lines.
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The group of permutational symmetries of the Euler equations (1.2) consists

of 24 elements. Among others it contains the following five permutations:

τ2(1, 2, 3, 4, 5, 6) = (2, 1, 3, 5, 4, 6),

τ3(1, 2, 3, 4, 5, 6) = (3, 2, 1, 6, 5, 4),

τ4(1, 2, 3, 4, 5, 6) = (4, 2, 6, 1, 5, 3),

τ5(1, 2, 3, 4, 5, 6) = (5, 4, 3, 2, 1, 6),

τ6(1, 2, 3, 4, 5, 6) = (6, 2, 4, 3, 5, 1).

(2.5)

For more details see Section II of [9] where, with the notations therein, τ2 = σ1,

τ3 = σ3, τ4 = σ7, τ5 = σ8 ◦ σ1 and τ6 = σ7 ◦ σ3.

Let P be a proper Darboux polynomial of system (1.2), that is d(P ) = SP ,

where d is the corresponding derivation and S ∈ C[x1, . . . , x6]\{0}, S(x) =
∑6

i=1 αixi, α1, . . . , α6 ∈ C and at least one of them is non-zero, say αi0 6= 0.

According to (2.5) τi0(i0) = 1. Now, Theorem 2.1b implies that without loss of

generality, one can always assume that α1 6= 0. This fact will be used in the

proof of Theorem 1.1.

Further, d will always denote the derivation associated with the Euler equa-

tions (1.2).

2.3. Another invariance property. Beside permutational symmetries, the

Euler equations (1.2) possess also another invariant property related to the

change of signs of the couples of variables (x1, x4), (x2, x5) and (x3, x6) respec-

tively. More precisely, let us note that

τ14(x1, x2, x3, x4, x5, x6) = (−x1, x2, x3,−x4, x5, x6),

τ25(x1, x2, x3, x4, x5, x6) = (x1,−x2, x3, x4,−x5, x6),

τ36(x1, x2, x3, x4, x5, x6) = (x1, x2,−x3, x4, x5,−x6).

(2.6)

It is easy to see that for (ij) = (14), (ij) = (25) and (ij) = (36),

τij
−1 ◦ d ◦ τij = −d,

that means that under these transformations, the right hand sides of equations

(1.2) change signs.

For the polynomial T ∈ C[x1, . . . , x6], let us denote T(ij) := T ◦ τij . Thus, if

T is a first integral of the system (1.2), then T(14), T(25) and T(36) are also first

integrals of this system.
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Moreover, if P is its Darboux polynomial, that is d(P ) = SP , then

d(P(ij)) = −S(ij)P(ij).

In particular, if

(2.7) d(P )(x) = (α1x1 + α2x2 + α3x3 + α4x4 + α5x5 + α6x6)P (x),

then

(2.8) d(P(14))(x) = (α1x1 − α2x2 − α3x3 + α4x4 − α5x5 − α6x6)P(14)(x)

and

(2.9) d(P(25))(x) = (−α1x1 + α2x2 − α3x3 − α4x4 + α5x5 − α6x6)P(25)(x).

2.4. Explicit form of some linear differential operators. Let us de-

note by Xij , 1 ≤ i < j ≤ 6, the linear differential operator defined by the

formula

Xij(G) = det
∂(H1, H2, H3, G)

∂(x1, . . . , x̂i, . . . , x̂j , . . . , x6)
,

where G is a holomorphic function and x̂r means the absence of xr .

These operators play a crucial role in the proof of Theorem 1.1. In particular,

for this proof we need the explicit formula for some of them.

To simplify notation, we write: λij = λi − λj for i 6= j, 1 ≤ i, j ≤ 6. The

needed formulas are:

X23 =(λ64x2x4x6 + λ45x3x4x5 + λ56x1x5x6)
∂

∂x1

+ (λ16x1x2x6 + λ51x1x3x5 + λ65x4x5x6)
∂

∂x4

+ (λ61x
2
1x6 + λ14x1x3x4 + λ46x

2
4x6)

∂

∂x5

+ (λ15x
2
1x5 + λ41x1x2x4 + λ54x

2
4x5)

∂

∂x6
,
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X25 =(λ63x1x3x6 + λ34x
2
3x4 + λ46x4x

2
6)

∂

∂x1

+ (λ16x
2
1x6 + λ41x1x3x4 + λ64x

2
4x6)

∂

∂x3

+ (λ13x1x
2
3 + λ61x1x

2
6 + λ36x3x4x6)

∂

∂x4

+ (λ31x
2
1x3 + λ14x1x4x6 + λ43x3x

2
4)

∂

∂x6
,

X26 =(λ53x1x3x5 + λ34x2x3x4 + λ45x4x5x6)
∂

∂x1

+ (λ15x
2
1x5 + λ41x1x2x4 + λ54x

2
4x5)

∂

∂x3

+ (λ13x1x2x3 + λ51x1x5x6 + λ35x3x4x5)
∂

∂x4

+ (λ31x
2
1x3 + λ14x1x4x6 + λ43x3x

2
4)

∂

∂x5
,

X35 =(λ62x1x2x6 + λ24x2x3x4 + λ46x4x5x6)
∂

∂x1

+ (λ16x
2
1x6 + λ41x1x3x4 + λ64x

2
4x6)

∂

∂x2

+ (λ12x1x2x3 + λ61x1x5x6 + λ26x2x4x6)
∂

∂x4

+ (λ21x
2
1x2 + λ14x1x4x5 + λ42x2x

2
4)

∂

∂x6
,

X36 =(λ52x1x2x5 + λ24x
2
2x4 + λ45x4x

2
5)

∂

∂x1

+ (λ15x
2
1x5 + λ41x1x2x4 + λ54x

2
4x5)

∂

∂x2

+ (λ12x1x
2
2 + λ51x1x

2
5 + λ25x2x4x5)

∂

∂x4

+ (λ21x
2
1x2 + λ14x1x4x5 + λ42x2x

2
4)

∂

∂x5
,
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X56 =(λ23x1x2x3 + λ42x2x4x6 + λ34x3x4x5)
∂

∂x1

+ (λ31x
2
1x3 + λ14x1x4x6 + λ43x3x

2
4)

∂

∂x2

+ (λ12x
2
1x2 + λ41x1x4x5 + λ24x2x

2
4)

∂

∂x3

+ (λ21x1x2x6 + λ13x1x3x5 + λ32x2x3x4)
∂

∂x4
.

It is easy to see that outside of some very special subcases of the Manakov case,

all differential operators Xij , 1 ≤ i < j ≤ 6 are not identically zero. Note that

Xij(Hr) = 0, 1 ≤ r ≤ 3, and, moreover, Xij(xi) = Xij(xj) = 0, 1 ≤ i < j ≤ 6.

2.5. Linear partial differential equations. Let us consider the following

linear partial differential equation

(2.10)
n

∑

i=1

ai(x)
∂F

∂xi

= 0,

where ai, 1 ≤ i ≤ n, are holomorphic functions defined on some open subset

U ⊂ Cn.

Theorem 2.2: Let x0 ∈ U be such that not all ai(x0), 1 ≤ i ≤ n, vanish.

Let us suppose that F1, . . . , Fn−1, F are holomorphic on U solutions of equation

(2.10). Let us suppose that the vectors (gradFi)(x0) are linearly independent.

Then there exists a neighbourhood V of x0, V ⊂ U and a holomorphic function

Ω defined on V , such that for every x ∈ V one has

(2.11) F (x) = Ω(F1(x), . . . , Fn−1(x)).

See §31 of [4] and also §156 of [16]. For modern treatment see the Holo-

morphic Rectification Theorem (Theorem 1.18) in [7], which immediately

implies Theorem 2.2.

Further, U denotes a subset of C6 defined by the condition that for all

1 ≤ i < j ≤ 6, and any point z ∈ U , the vectors (gradH1)(z), (gradH2)(z),

(gradH3)(z), (gradxi)(z), (gradxj)(z) are linearly independent. Unless all λi,

1 ≤ i ≤ 6, are equal, U is always an open dense subset of C6. Saying that

identity (2.11) is locally fulfilled, we understand that this is so on some neigh-

bourhood of some point from U .
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3. Proof of Theorem 1.1.

Let us suppose that the irreducible rational fraction P1/P2, where P1, P2 ∈
C[x1, . . . , x6], is a first integral of system (1.2) and that P1 (and thus also P2)

is not its first integral. Then (D1) from Section 2.1 implies that P1 and P2

are proper Darboux polynomials of system (1.2). Since the right-hand sides

of system (1.2) are homogeneous of the same degree then from (D2) and (D4)

it follows that system (1.2) admits also an irreducible homogeneous proper

Darboux polynomial P and its cofactor is a homogeneous linear form, i.e.,

S =

6
∑

i=1

αix1,

where αi, 1 ≤ i ≤ 6, are some constants. Since S 6= 0, then at least one of

its coefficients is not zero. As explained in Section 2.2, without any loss of

generality, we can assume that α1 6= 0.

Theorem 1.1 is now a direct consequence of

Theorem 3.1: If for some λ ∈ C6, the Euler equations (1.2) have a proper

Darboux polynomial then they have a polynomial fourth integral.

Proof. The proof is quite long and it is naturally divided on three almost inde-

pendent parts.

Part 1: Construction of polynomial first integral.

Let P be a proper Darboux polynomial of the Euler equations (1.2). From

(2.7) and (2.8) it immediately follows that R = PP(14) is a Darboux polynomial

of system (1.2) with cofactor 2(α1x1 + α4x4), i.e,

(3.1) d(R)(x) = 2(α1x1 + α4x4)R(x).

Thus, from (2.9), one deduces that for the polynomial U = R(25)

d(U)(x) = −2(α1x1 + α4x4)U(x),

and finally (see (D3) from Section 2.1) that

d(V ) = 0,

where

V := RU = RR(25) = (PP(14))(PP(14))(25) = PP(14)P(25)P(14)(25).

This means that V is a polynomial first integral of the Euler equations (1.2).
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The main difficulty is to decide when V is a fourth integral. We will prove

that except for some very special subcases of the Manakov case, this is always

the case. This is proved in Part 2 when the polynomials R and U are relatively

prime and in Part 3 when this is not the case. As in the Manakov case, the

polynomial fourth integral always exists (see Appendix), this will prove Theorem

3.1.

Part 2: R and U are relatively prime polynomials.

We have to decide when the first integrals H1, H2, H3 (see (1.3)) and V are

functionally independent. Let us suppose that they are functionally dependent.

Then for all αi, 1 ≤ i ≤ 6,

(3.2) Xij(V ) = Xij(R)U + Xij(U)R = 0.

We will prove that except for very special subcases of the Manakov case, this

contradicts α1 6= 0.

If one supposes that polynomials R and U are relatively prime, then (3.2)

shows that either R divides Xij(R), i.e.,

(3.3) Xij(R) = fijR,

where fij is a homogeneous polynomial of second degree, or Xij(R)=Xij(U)=0.

For the first possibility, according to (3.2) and (3.3), we have that

(3.4) Xij(U) = −fijU.

In particular, X25(R) = f25R and X25(U) = −f25U . Applying to the

first identity the change of variables τ25 (see Section 2.3), we conclude that

X25(U) = (f25 ◦ τ25)U and finally that f25 = −f25 ◦ τ25.

But this is impossible because f25 cannot depend on x2 and x5. Indeed,

the maximal powers of x2 and of x5 in X25(R) respectively are never greater

than their respective maximal powers in R. Thus f25 = 0 and consequently

X25(R) = X25(U) = 0.

Hence we have proved that R satisfies the equation

(3.5) X25(R) = det
∂(H1, H2, H3, R)

∂(x1, x3, x4, x6)
= 0.

This is a linear homogeneous partial differential equation for R. It has five

solutions H1, H2, H3, x2 and x5 that are never functionally dependent unless
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λ1 = λ3 = λ4 = λ6 (a subcase of the Manakov case). Thus by Theorem 2.2 (see

Section 2.5), we have that locally

(3.6) R = Φ(H1, H2, H3, x2, x5),

where Φ is some holomorphic function.

Let us note that not only U = R◦τ25, but also U = R◦τ36. This is so, because

R is a homogeneous polynomial of even degree, and it contains only monomials

that have only even sum of the powers of x1 and x4. Thus the monomials of R

containing even sum of the powers of x2 and x5 contain also even sum of the

powers of x3 and x6 and, respectively, the monomials of R containing odd sum

of the powers of x2 and x5 contain odd sum of the powers of x3 and x6.

Since U = R ◦ τ36, exactly in the same way as (3.5), one proves that f36 = 0,

or equivalently that

X36(R) = det
∂(H1, H2, H3, R)

∂(x1, x2, x4, x5)
= 0.

This equation has five solutions: H1, H2, H3, x3 and x6 that are never

functionally dependent unless λ1 = λ2 = λ4 = λ5 (a subcase of the Manakov

case). So that locally

(3.7) R = Ψ(H1, H2, H3, x3, x6),

for some holomorphic function Ψ.

From (3.3) and (3.4) we know that

(3.8) X56(R) = f56R

and

(3.9) X56(U) = −f56U,

where f56 is a homogeneous polynomial of degree two, or X56(R) = X56(U) = 0.

We prove that f56 cannot depend on x2, x3, x5 and x6. Indeed, apply-

ing to identity (3.8) the change of variables τ25 (see (2.6)), we conclude that

X56(U) = −(f56 ◦ τ25)U . Then (3.9), leads to f56 = f56 ◦ τ25.

Thus f56 either does not depend on x2 and x5 or is a quadratic polynomial

of them. The latter is impossible because the biggest sum α + β of x2
αx5

β

in X56(R) is never bigger than the same sum in R plus 1. Thus f56 does not

depend on x2 and x5.
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Exactly the same arguments, applied to the change of variables τ36, lead to

the conclusion that f56 does not depend on x3 and x6. Thus f56, if it is not

zero, is a homogeneous quadratic function only of x1 and x4.

Completely analogous considerations show that the polynomials f23, f26 and

f35, if they are not zero, are homogeneous quadratic functions only of x1 and

x4.

Assume now that at least one of the polynomials f56, f35 and f26 is not zero.

First, let us examine the case when f56 6= 0. We have

(3.10)
X35(R)

X56(R)
=

f35

f56
.

Hereafter, for all representations of R as a function of H1, H2, H3 and two of

the coordinates (see, for example, (3.6) and (3.7)) we denote by ∂i the partial

derivative with respect to i-th variable, 1 ≤ i ≤ 5. We have

X35(R) = X35(x2)∂4Φ(H1, H2, H3, x2, x5),

X56(R) = X56(x2)∂4Φ(H1, H2, H3, x2, x5).
(3.11)

Let us note that ∂4Φ(H1, H2, H3, x2, x5) 6= 0 because otherwise we would have

f56 = 0. Thus (3.10) leads to

A1 =
X35(x2)

X56(x2)
=

λ16x
2
1x6 + λ41x1x3x4 + λ64x

2
4x6

λ31x2
1x3 + λ14x1x4x6 + λ43x3x2

4

=
f35

f56
.

The polynomials f35 and f56 depend only on x1 and x4 while A1 depends on

x1, x3, x4 and x6. Thus necessarily we have

∂A1

∂x3
= 0.

Simple computations show that the last condition is equivalent to

(3.12) λ13λ16x
4
1 − (λ2

14 + λ16λ43 + λ13λ46)x
2
1x

2
4 + λ43λ46x

4
4 = 0.

Let us consider representation (3.7) of R: R = Ψ(H1, H2, H3, x3, x6) and

vector field X26. As above we have

X26(R)

X56(R)
=

f26

f56
.

Taking into account that ∂4Ψ(H1, H2, H3, x3, x6) 6= 0, because f56 6= 0, we

deduce from this equation that

A2 =
X26(x3)

X56(x3)
=

λ15x
2
1x5 + λ41x1x2x4 + λ54x

2
4x5

λ12x2
1x2 + λ41x1x4x5 + λ24x2x2

4

=
f26

f56
.



Vol. 163, 2008 EULER EQUATIONS ON LIE ALGEBRA 277

The polynomials f26 and f56 depend only on x1 and x4 while A2 depends on

x1, x2, x4 and x5, therefore,

∂A2

∂x2
= 0.

The last condition is equivalent to

(3.13) λ51λ21x
4
1 − (λ2

14 + λ24λ51 + λ21λ54)x
2
1x

2
4 + λ54λ24x

4
4 = 0.

Let us investigate when (3.12) is fulfilled. This happens only in the following

four cases:

1. λ13 = λ43 = 0;

2. λ13 = λ46 = 0;

3. λ16 = λ43 = 0;

4. λ16 = λ46 = 0.

In case 1 (λ13 = λ43 = 0) X56(x2) = 0, thus by (3.11) X56(R) = 0 and finally

f56 = 0. This contradicts our assumption that f56 6= 0, so we do not consider

this case now.

Case 2 (λ13 = λ46 = 0) and case 3 (λ16 = λ43 = 0) are particular cases of the

Manakov case.

Let us consider case 4 (λ16 = λ46 = 0). Equating to zero, e.g., the coefficient

of x4
1 in the left hand side of (3.13) we conclude that either λ21 = 0 or λ51 = 0.

Both possibilities together with the condition of case 4 lead to particular cases

of the Manakov case.

When f35 6= 0, in the same way as above we come to the following expressions:

B1 =
X56(x2)

X35(x2)
=

λ31x
2
1x3 + λ14x1x4x6 + λ43x3x

2
4

λ16x2
1x6 + λ41x1x3x4 + λ64x2

4x6
=

f56

f35
,

B2 =
X23(x6)

X35(x6)
=

λ15x
2
1x5 + λ41x1x2x4 + λ54x

2
4x5

λ21x2
1x2 + λ14x1x4x5 + λ42x2x2

4

=
f23

f35

therefore,

∂B1

∂x3
= 0,

∂B2

∂x2
= 0.

As in the previous case the last two equations lead to particular cases of the

Manakov case.
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When f26 6= 0, we come to the expressions:

C1 =
X23(x5)

X26(x5)
=

λ61x
2
1x6 + λ14x1x3x4 + λ46x

2
4x6

λ31x2
1x3 + λ14x1x4x6 + λ43x3x2

4

=
f23

f26
,

C2 =
X56(x3)

X26(x3)
=

λ12x
2
1x2 + λ41x1x4x5 + λ24x2x

2
4

λ15x2
1x5 + λ41x1x2x4 + λ54x2

4x5
=

f56

f26

that give
∂C1

∂x3
= 0,

∂C2

∂x2
= 0.

These equations also lead to particular cases of the Manakov case.

Let us suppose now that f26 = f35 = f56 = 0. From the equation X56(R) = 0

we conclude that (out of the subcase λ1 = λ2 = λ3 = λ4 of the Manakov case)

locally, for some holomorphic function Θ one has

R = Θ(H1, H2, H3, x5, x6).

When ∂4Θ(H1, H2, H3, x5, x6) 6= 0, the equation X36(R) = 0 leads to

(λ21x
2
1x2 + λ14x1x4x5 + λ42x2x

2
4)∂4Θ(H1, H2, H3, x5, x6) = 0,

i.e.,

(3.14) λ21 = λ14 = λ42 = 0.

On the other hand the equation X26(R) = 0 gives

(λ31x
2
1x3 + λ14x1x4x6 + λ43x3x

2
4)∂4Θ(H1, H2, H3, x5, x6) = 0,

i.e., λ31 = λ14 = λ43 = 0 that, together with (3.14), leads to the already

excluded case λ1 = λ2 = λ3 = λ4.

What happens when ∂4Θ(H1, H2, H3, x5, x6) = 0? In this case we have

∂5Θ(H1, H2, H3, x5, x6) 6= 0,

because otherwise it will follow that R is functionally dependent on H1, H2 and

H3. But this is not so. Indeed, as follows from (3.1), R is a proper Darboux

polynomial because α1 6= 0. The equation X25(R) = 0 gives
(

λ31x
2
1x3 + λ14x1x4x6 + λ43x3x

2
4

)

∂5Θ(H1, H2, H3, x5, x6) = 0,

i.e.,

(3.15) λ31 = λ14 = λ43 = 0.
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The equation X35(R) = 0 gives

(

λ21x
2
1x2 + λ14x1x4x5 + λ42x2x

2
4

)

∂5Θ(H1, H2, H3, x5, x6) = 0,

i.e., λ21 = λ14 = λ42 = 0 that, together with (3.15), leads to the already

excluded case. Thus the assumption that H1, H2, H3 and V are functionally

dependent when R and U are relatively prime can eventually be true only in

some very special subcases of the Manakov case.

Remark: We have to note here that there are really some subcases of the Mana-

kov case when our procedure does not lead to a fourth integral. For example,

when λ1 = λ4 = λ5 = λ6 = 0 and λ2 = −λ3 (subcase of case 4) the polynomial

P = x2 + x3 is a proper Darboux polynomial of the Euler equations (1.2).

However, applying our procedure on P, one obtains a polynomial first integral

that is functionally dependent on H3. But we know that in the Manakov case

there always exists a polynomial fourth integral (cf. Appendix). That is why

we do not exclude the Manakov case from the condition of the theorem.

Part 3: R and U are not relatively prime polynomials.

We have for R and U

R = PP(14) and U = P(25)P(14)(25).

Since the polynomial P is irreducible, the polynomials P(14), P(25) and P(14)(25)

are also irreducible.

Thus polynomials R and U are not relatively prime only in the following 8

cases:

1. P = P(25);

2. P = −P(25);

3. P = P(14)(25);

4. P = −P(14)(25);

5. P(14) = P(25) that is equivalent to 3;

6. P(14) = −P(25) that is equivalent to 4;

7. P(14) = P(14)(25) that is equivalent to 1;

8. P(14) = −P(14)(25) that is equivalent to 2.

Let us examine case 1. The cofactor of P is

α1x1 + α2x2 + α3x3 + α4x4 + α5x5 + α6x6.
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According to (2.9) the cofactor of P(25) is

−α1x1 + α2x2 − α3x3 − α4x4 + α5x5 − α6x6.

P and P(25) are equal in the case under consideration. Comparing the two

cofactors we find

α1 = 0, α3 = 0, α4 = 0, α6 = 0.

However, this contradicts our assumption that α1 6= 0. In the same way, cases

2, 3 and 4 also lead to α1 = 0.

As an example of application of the procedure for the construction of the

fourth integral described in the above proof, let us consider the product case

when λ1 6= λ2 and λ1 6= λ3. One can easily see that in this case the polynomial

P =
λ21

c
x2 + x3 +

λ21

c
x5 + x6,

where c =
√

λ13λ21, is a proper Darboux polynomial of system (1.2) with cofac-

tor c(x1 + x4). Here, P = P(14) and thus R = PP(14) = P 2 and U = (P 2)(25) =

P 2
(25). Finally the polynomial

V = RU =
(

PP(25)

)2
=

[

−λ21

λ13
(x2 + x5)

2 + (x3 + x6)
2

]2

is a fourth integral of (1.2). In fact, in this example, PP(25) already is a fourth

integral.

The explicit form of the polynomial fourth integral when λ2 6= λ1 and λ2 6= λ3

or when λ3 6= λ1 and λ3 6= λ2 follows now from Theorem 2.1b applied to the

permutational symmetries τ = τ2 ◦ τ3 and τ2, respectively.

Remark: When comparing our system (1.2) with its “twin brother”—the Euler–

Poisson equations of heavy rigid body motion (see [2,3,14,15,18]) we conclude

from [21] (see also [11]) that for these equations the exact counterpart of The-

orem 1.1 holds. Nevertheless, the exact counterpart of Theorem 3.1 for Euler-

Poisson equations fails. Indeed, in the non-integrable so-called Hess-Appelrot

case, the proper Darboux polynomial exists

Appendix

Here we explicitely write down the fourth integral for the Manakov case and

product case in form obtained in [9].
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The table below covers all the space of parameters (λi)1≤i≤6 satisfying the

Manakov condition. In this table all cases are explicitly written down, unless

they can be deduced one from another by the permutational symmetry argu-

ment. The last column in this table contains necessary and sufficient conditions

for functional independence of the integrals. The generic case in the table is

defined explicitly by the conditions of functional independence of first integrals

H1, H2, H3 and F given in the last column. For the last four rows, the listed

first integrals are functionally independent except for the trivial case when all

components of λ are equal. The results given in this table remain valid also

when λ ∈ C
6.

Functionally independent first integrals for the Manakov case

Case First integrals Conditions

Generic H1, H2, H3, |λ16| + |λ62| > 0 and

F = λ16λ24x
2
4+ |λ16| + |λ51| > 0 and

λ51λ62x
2
5 − λ16λ62x

2
6 |λ24| + |λ62| > 0 and

|λ13| + |λ32| > 0

λ16 = λ62 = 0 H1, H2, H3, |λ43| + |λ53| > 0

(Case I) G = x2
3 + x2

4 + x2
5

λ43 = λ53 = 0 H1, x3, x4, x5 no conditions

λ16 = λ51 = 0 H1, H2, H3, |λ43| + |λ63| > 0 and

(Case II) G = λ24λ43x
2
4+ |λ43| + |λ24| > 0 and

λ24λ63x
2
5 − λ43λ62x

2
6 |λ24| + |λ62| > 0 and

|λ13| + |λ32| > 0

λ43 = λ63 = 0 H1, H2, H3, x5 no conditions

λ43 = λ24 = 0 H1, H2, H3, x5 no conditions

λ24 = λ62 = 0 H1, H2, H3, x6 no conditions

λ13 = λ32 = 0 H1, H2, H3, x1 no conditions

In the product case, one can take as a fourth integral

H4 = λ1x1x4 + λ2x2x5 + λ3x3x6,

which when (λ1, λ2, λ3) 6= (c, c, c) for some c ∈ C, is always functionally inde-

pendent of H1, H2 and H3.
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